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a b s t r a c t

Galling insects commonly induce anatomical and metabolic changes in their host plant
tissues, which is true for Schinus polygamus (Cav.) Cabr. (Anacardiaceae) in Chile. Currently,
anatomical and chemical changes induced by galling insects in stems and leaves of S.
polygamus were analyzed. Methanolic extracts of non-galled and galled tissues were
analyzed by gas chromatographyemass spectrometry (GC-MS). Differences in the sec-
ondary metabolite profiles, and their relation with plant responses to gall development
were evidenced. Transverse sections of non-galled host organs and galls were done, and
observed under light and scanning electron microscopies. One stem gall (conical) and one
leaf gall (globoid) morphotypes were identified. The globoid and conical galls have dense
trichomes, large nymphal chambers, and develop mainly by tissue hyperplasia. The
chemical profiles of stems, leaves and galls are distinct, except for the concomitant
detection of pyrogallol in galls. The highest abundance of terpenes and phenols in gall
tissues were identified, and two triterpenes were firstly reported for the non-galled tissues
of S. polygamus. Host plant tissues are highly responsive to the Psyllidae stimuli toward the
over development of a phenolic-rich parenchyma, which ends up favouring the Callophya
sp. establishment and gall development.

© 2016 Published by Elsevier Ltd.
1. Introduction

Schinus polygamus (Cav.) Cabr (Anacardiaceae), commonly known as hardee peppertree, is an aromatic and medicinal
shrub native to Argentina, Bolivia, Uruguay, Brazil and Chile (Rodríguez, 2011). In some South American countries, such as
Chile and Brazil, S. polygamus presents numerous phytosanitary problems caused by herbivorous and pathogenic insects
(Damasceno et al., 2010). This species also have been reported as a host of a diversity of galling insects (S�aiz and Nú~nez, 1997)
capable of inducing galls on leaves, branches, and flowers (S�aiz and Nú~nez,1997; Burckhardt and Basset, 2000). Accordingly, S.
polygamus can be defined as a super-host of galling insects (Dias et al., 2013a), which may be Diptera (Cecidomyiidae),
Hemiptera (Psylloidea), and Lepidoptera (Cecidosidae) (S�aiz and Nú~nez, 1997; Burckhardt and Basset, 2000).
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Galls are specialized plant structures induced by a parasite organism, usually an insect, which alters the normal devel-
opmental patterns of plant tissues (Felt, 1940). The galling organisms induce anatomical and metabolic alterations, probably,
in response to secretions injected by the larvae during the feeding activity or by the female during oviposition (Dias et al.,
2013a). The galling insects are capable of inducing morphogenetic changes in their host plants towards obtaining food or/
and shelter (Rohfritsch, 1992). Cell hypertrophy, tissue hyperplasia, inhibition of some developmental programs and cyto-
logical changes occur during the development of galls (Ferreira and Isaias, 2013). Moreover, gall-inducing herbivores have the
ability to manipulate plant tissues growth and development for their own benefit, and can also manipulate their chemical
composition (Moura et al., 2008; Dias et al., 2013b). This chemical manipulation redirects plant cell responses towards the
determination of tissues with higher nutritional quality, the inner nutritive tissues, and tissues rich in defensive compounds,
the outer tissue layers, which may help in protecting the galling insects against their natural enemies (Stone and Sch€onrogge,
2003; Formiga et al., 2009).

Galls usually contain a large amount of nutrients and low concentrations of defensive compounds (Hartley, 1999; Isaias
et al., 2014). Nonetheless, some variations in this general pattern may occur, and galls may contain higher concentrations
of defensive compounds in comparison to the non-galled tissues of their host plants (Hartley, 1999). The chemical profile of S.
polygamus tissues revealed leaf volatile compounds synthesized in response to the attack of herbivores (Valladares et al.,
2002; Damasceno et al., 2010). The composition of such volatiles varies between non-galled leaves and galls (Damasceno
et al., 2010), mostly in relation to mono and sesquiterpenes. However, there is a lack of information about non-volatile
secondary metabolites (SM), as well as their functions in galled tissues of S. polygamus. Also, studies on the structural pro-
file due to galling stimuli on Schinus species are restricted to Callophya duvauae Scott-S. polygamus system (Dias et al., 2013a),
and a phytochemical profile of this species in galled and non-galled conditions has yet to be determined. Herein, we compare
the structural and chemical potential of two distinct host plant organs, the stems and leaves of a single species, S. polygamus,
to respond to two different galling herbivores stimuli, and focus on the following questions: (i) Are there structural traits of
the host organs potentiated towards the development and survival of the galls? (ii) Do the chemical profiles indicate in-
vestment in chemical defensive strategies in galls? (iii) Are the galling insects associated to stems and leaves capable of
inducing convergent responses on their host organs?

2. Materials and methods

2.1. Study area and processing of plant material

Branches of S. polygamus were sampled at the town of Chill�an Viejo, kilometer 4, ~Nuble Province, Biobío Region
(36�3903200S 72�1604300W), Chile. Plant species identification was confirmed by specialists from the Department of Botany of
the University of Concepci�on (CONC). A voucher specimen was deposited in CONC under the accession number 180330.

The branches were visually inspected, with a magnifying glass to detect the presence of galls. Gall morphotypes were
classified and described according to Isaias et al. (2013).

2.2. Structural analyses

For studies in scanning electron microscopy (SEM), samples of leaf and stem galls were fixed in 2.5% glutaraldehyde in
sodium phosphate buffer, pH 7.2, at 4 �C, for 24 h. The samples were washed twice in 0.1 M phosphate-buffered saline (PBS)
for 10 min, post-fixed in 1% osmium tetroxide in 0.1 M PBS, at 4 �C, for 2 h, and washed with the same buffer twice for 10 min.
Fragments were dehydrated in 30e100% ethanol series and were dehydrated a second time in liquid CO2 by a critical point
dryer (Balzers® Union FL-9496, Holland) (O'Brien and Mccully, 1981). The sections were mounted on aluminum stubs with
carbon film, and metalized in gold (approximately 400 Å) in a Sputter Coater (Edwards® S 150, U.S.) for 3 min at 30 mA.
Observations were done under a scanning electron microscopy (JEOL® JSM - 6380 LV, Japan).

For the studies in light microscopy (LM), leaf and stem galls were fixed in 4% Karnovsky in 0.1 mM phosphate buffer for
24 h (O'Brien and Mccully, 1981; modified to pH 7.2) and stored in 70% ethanol. For the preparation of permanent slides,
fragments were dehydrated in a 50e100 n-butyl series, and embedded in Paraplast® (Kraus and Arduin, 1997). Serial sections
(12e18 mm) were obtained in a rotary microtome and stained in 0.5% safranin-astra blue (9:1) (Kraus and Arduin, 1997). The
slides were observed and photographed under a light microscope (Leica® ICC50 HP).

2.3. Methanolic extraction and identification of chemical compounds

Non-galled stems and leaves, and stem and leaf galls were isolated andmacerated with 100% methanol for 7 days, at room
temperature. The non-galled stem bark was removed prior to methanol extraction. Methanol extracts were filtered through
Whatman® No 1 filter paper, and undergo the identification process of secondary metabolites (SM).

The extracts were concentrated at a reduced pressure with a rotary evaporator until completely dry. Subsequently, the
crude extract was sequentially extracted with n-hexane, ethyl acetate, and distilled water. The hexanic and ethyl acetate
extracts were concentrated again at a reduced pressure in a rotary evaporator, diluted in ethyl acetate, andmonitored by thin-
layer chromatography (TLC). For the identification of chemical compounds in each fraction, these extracts were subjected to
gas chromatography coupled with mass spectrometry (GC-MS) in the Agilent® 7890A equipment, with the Agilent® 5975C
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mass detector, using a capillary column of fused silica type HP5-MS, 30 m, 0.25 mm internal diameter, and 0.25 mm thick,
under the following characteristics: Temperature: 250 �C; Detector (mass): 280 �C; Oven: initial 100 �C for 5 min, increasing
to 8 �C/min up to 250 �C, and maintained for 15 min. The adjustment of the detector as a scanner varied from 50 to 500 amu.
Flow of carrier gas (electronic grade helium) at 1 mL/min. The characterization was carried out by means of comparison with
the NIST® database.
3. Results

3.1. Features of stem and leaf galls

Leaves and branches of S. polygamus are infested by gall-inducing insects (Fig. 1A), which can be recognized by two gall
morphotypes, a stem and a leaf gall. Stem galls are conical, dark brown, and have a bunch of trichomes towards the apical
portion (Fig. 1B). Sometimes several galls may coalesce, but each gall has one larval chamber. Leaf galls are globoid, red, with
the aperture located at the tip of an abaxial projection surrounded by abundant trichomes (Fig. 1C). There is a depression on
the adaxial surface of leaf lamina, which is green (Fig. 1D). The globoid galls are isolated, and may vary from a single to many
galls on the same leaf lamina.

The nymphal chambers, both of stem conical and of leaf globoid galls, are large, surrounded by concentric layers of cells
(hyperplasia) (Fig. 2AeD). The shape of the nymphal chamber is different in the two gall morphotypes, round-shaped in leaf
galls (Fig. 2AeB); and elongated in stem galls in a funnel shape that narrows towards the opening area of the gall and is wider
towards the gall inner portion (Fig. 2CeD). Three tissue layers are observed in stem galls (Fig. 2DeE), while in leaf gall a
homogeneous tissue is found (Fig. 2B). Moreover, the presence of trichomes was revealed in the opening area of stem galls,
Fig. 1. Galls of Hemiptera (Psyllidae: Calophyidae) on Schinus polygamus (Cav.) Cabr. (Anacardiaceae). A: Branches with leaf and stem galls. B: Detail of a conical
stem gall. CeD: Details of leaf globoid galls, C: Abaxial surface view evidencing the projection with trichomes on gall aperture (arrow), D: Adaxial view (dotted
area). Bars: B, C, D ¼ 1 mm; A ¼ 1 cm.



Fig. 2. Leaf and stem galls on Schinus polygamus (Cav.) Cabr. (Anacardiaceae). AeB: Leaf gall showing tissue hyperplasia and round nymphal chamber in SEM
preparation (A), and LM preparation evidencing the homogeneous parenchyma (B). CeE: Stem gall with tissue hyperplasia and elongated nymphal chamber in
SEM preparation (C) where trichomes in gall aperture can be seen, and LM preparation where the three tissue layers are evidenced (D) and details of each three
tissue layers (E). Bars: E ¼ 50 mm; B, D ¼ 200 mm and A, C ¼ 500 mm. Abbreviations: NC: nimphal chamber; CPG: cortical parenchyma of gall; LM: leaf mesophyll,
Tr: trichomes; IC: internal cortex; MC: middle cortex; OC: outer cortex; Pe: periderm.
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which is projected inwards (Fig. 2C). In both galls, each chamber hosts a single inducing insect, belonging to the superfamily
Psyllidae (family Calophyidae), presumably to the genus Calophya.

3.2. Chemical profile of secondary metabolites in host organs and galls

The chemical profile of the non-galled host organs and both galls are distinct (Table 1), except for the concomitant
detection of pyrogallol both in stem and leaf galls, which represents the unique similarity in new synthesis of molecules due
to galling stimuli. The SM of the family of phenols corresponds to 50% and 25% of the total diversity of molecules in leaf and
stem galls, respectively. Stem galls maintain the presence of steroids also detected in non-galled stems, but with differences in
the chemical structure of such metabolites.

Generally, the predominating compounds in S. polygamus are terpenes (61.9%), mainly sesquiterpenes. In overall analyses,
the non-galled stems and leaves have terpenes but with differences in their chemical structures. The non-galled stems have
the greatest diversity of sesquiterpenes, which are not detected in non-galled leaves, and are not conservative in galls, as well.
Current analyses detected a-amyrin and ursenal triterpenes for the first time in S. polygamus.

The uniqueness of the chemical profile of leaf galls is represented by the detection of nitrogen compounds, aromatic
hydrocarbon benzofuran and quinone; while the uniqueness of the chemical profile of stem galls is represented by the
detection of fatty acid esters.

4. Discussion

4.1. Structural traits and gall survival

Gall morphological and anatomical characteristics are usually related to protective mechanisms against unfavorable
environmental conditions, especially desiccation (Stone and Sch€onrogge, 2003) and natural enemies of the galling insects
(Rohfritsch, 1992; Oliveira et al., 2006; Oliveira and Isaias, 2010). For example, trichomes are related to mechanical protection



Table 1
Biologically important secondary metabolites identified in extracts of non-galled leaves, non-galled stems, and leaf and stem galls of Schinus polygamus (Cav.)
Cabr. (Anacardiaceae).

Compound Relative Peak
Area (%)

Chemical Family

Non-galled
leaves

a-Amyrin 11.7 Triterpene

Leaf galls 1,2,3-Benzenetriol (pyrogallol) 12.33 Phenol (tannins)
6H-Purin-6-one, 1,7-dihydro-2-(N-methyl guanine or hypoxanthine) 5.23 Nitrogen compound
Ethanone, 1,1’-(6-hydroxy-2,5-benzofurandiyl)bis (euparone) 8.94 Aromatic hydrocarbon

benzofuran
Anthraquinone, 1-(methoxyphenyl) (1-methyl phenyl -anthraquinone) 10.66 Phenol (Quinone)

Non-galled
stems

a-Bergamotene 2.43 Sesquiterpene
Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)- (7-epi-a
cadinene)

6.32 Sesquiterpene

Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-,
[1R-(1a,7b,8aa)]-(eremophylene)

5.75 Sesquiterpene

Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)-
(D cadinene)

7.0 Sesquiterpene

Tricyclo[4.4.0.02,7]dec-3-ene-3-methanol,1-methyl-8-(1-methylethyl)-(15- copaene) 12.91 Sesquiterpene
Pregn-4-ene-3,20-dione, 18,21-dihycroxy (4-eno-18,21-dihidroxi-3,20-diona) 7.94 Steroidal
Urs-12-ene-28-al (ursenal) 8.44 Triterpene
Copaene 4.71 Sesquiterpene
Cyclohexene, 1-methyl-4-(5-methylene-4-hexenyl)-, (S) 3.05 Sesquiterpene
Spathulenol 6.29 Sesquiterpene
6-isopropenyl-4-8a-dimethyl-1,2,3,5,6,7,8,8a-octohydro-napthalen-2-ol 5.40 Sesquiterpene
1-piperideneacetonenitrile 3.43 Amine

Stems galls 1,2,3-Benzenetriol (pyrogallol) 25.22 Phenol (tannins)
Tridecanoic acid, methyl ester (myristic acid methyl ester) 24.62 Fatty acid ester
9, 12, 15-Octadecatrienoic ac, methyl ester (methyl linoleate) 30.80 Fatty acid ester
Ergosta-4,6,22-trien-3a-ol (ergosta trienol) 3.06 Steroidal
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against invading organisms (predators and parasitoids) and to stabilization of temperature and humidity inside the nymphal
chamber (Oliveira et al., 2006; �Alvarez et al., 2009).

Trichomes in stem and leaf galls of S. polygamus along with the hyperplasia of cortical parenchyma can protect the galling
insect both against natural enemies and unfavorable environmental conditions. Enhance in trichomes differentiation in leaf
galls can represent an overpotentialization of the ordinarymorphogenetical pattern of the host plant tissues for trichomes are
rarely observed in leaves of S. polygamus (Dias et al., 2013a). Such manipulation of host plant morphogenesis has also been
induced by C. duvauae in leaf galls S. polygamus (Dias et al., 2013a), Euphalerus ostreoides Crawf-Lonchocarpus muhelbergianus
Hassl (Oliveira et al., 2006), and Baccharopelma dracunculifoliae Burckhardt on Baccharis dracunculifolia DC (Arduin et al.,
2005), in Brazil. The presence of trichomes was reported, too, for galls induced by Calophya mammifex Burckhardt & Bas-
set on Schinus longifolius (Lindl.) Speg., and has also been interpreted as a mechanical defence mechanism (Agudelo et al.,
2013).

For stem galls, the trichomes differentiate in the dermal system of the nymphal chamber, which originated from the
folding of the stem epidermis towards the inner gall surface. Even though the mother cells of a phellogen are present close to
the nymphal chamber, suber differentiation does not occur. As a consequence of the spatial replacement, trichoblasts
differentiate from cells previously determined to be discharged by suberization. Moreover, the parenchyma cells, which
originate the cork cambium beneath the epidermis, turn into adult stem cells (Sugimoto et al., 2011). Their differentiated state
is likely to follow internal (developmental) and external signals (stress) that force such cells to redifferentiate to become
competent for switching their fates (Lev-Yadun, 2003). Redifferentiation processes are uncovered by multiple phenomena in
plants (Lev-Yadun, 2003), and in galls, plant cells under the influence of gall-inducing insects have their competence
reprogrammed, and often assume rapid cell cycles and new cell fates for the neo-ontogenesis of plant galls (cf. Carneiro et al.,
2014).

Both stem and leaf galls show hyperplasia of cortical parenchyma, a typical process of gall formation (Oliveira and Isaias,
2010; Moura et al., 2009a), which is one of the most common processes in various Hemiptera galls (Isaias et al., 2011; Dias
et al., 2013a, b; Formiga et al., 2015). Hyperplasia is induced in young tissues, which have a greater capacity for cell divi-
sion, and may respond promptly to the stimuli of the gall inducers (Rohfritsch, 1992). Such process results in increased
biomass in galls, and can confer a high number of nutritive cells, as well as thickens gall wall, which ends up mechanically
protecting the galling insect against unfavorable environmental conditions and natural enemies attack (Stone and
Sch€onrogge, 2003).

4.2. Chemical defence strategies

The chemical profile of the non-galled host plant organs is not maintained at gall developmental sites. The phenolics -
pyrogallol - were the only secondary metabolite (SM) accumulated both in leaf and stem galls. The triterpene a-amyrin
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detected in non-galled leaves does not accumulate in leaf galls, otherwise, accumulated metabolites which enhanced their
nutritional value (nitrogen compounds), but also their anti-microbial activity, such as the benzofuran (Nascimento et al.,
2004) and the quinone. The accumulation of sesquiterpenes, common in non-galled stems, is not detected in stem galls,
and may indicate the use of fatty acid precursors also to increase the nutritional value of gall tissues, as proposed by Tooker
and de Moraes (2009) for Gnorimoschema gallaesolidaginis Riley galls on Solidago altissima L.

The chemical accumulation of SM, especially phenolics, has been usually related to their defensive role (Nyman et al.,
2000; Agudelo and Ricco, 2012). Eventually the SM have also been associated with the success of the galling insects, as
observed for E. ostreoides-L. muhelbergianus (Oliveira et al., 2006) and for Cecidomyiidae-Aspidosperma spruceanum Müell.
Arg. systems (Formiga et al., 2009).

The phenolic compounds were the major SM detected in leaf and stem galls of S. polygamus. Particularly, pyrogallol
(tannins) was recognized both in globoid leaf galls and in the conical stem galls. This compound has antiseptic, antioxidant,
fungicide, and insecticide properties (Balasubramanian et al., 2014), so it is also believed to enhance the galls chemical
protection against natural enemies.

Another phenolic compounds detected in leaf galls belong to the quinone family. Experimental evidences suggest that
sedentary insects may stimulate a defensive mechanism based on the oxidation of phenols to quinones in plant tissues (Miles
and Oertli, 1993). However, herbivores that feed on tannin-rich plant material, as the leaf galls in current results, seem to
possess some chemical adaptation to remove tannins from their digestive systems, as proposed by Taiz and Zeiger (2006). We
infer that psyllids have developed oxidation mechanisms of quinone to non-toxic polymers, and overcome the defensive
mechanism of their S. polygamus host plants. Also, the deterrent effect of quinones (Nyman and Julkunen-Tiitto, 2000) could
improve the chemical microenvironment and its effect against natural enemies of the galling insect, which do not have the
above mentioned detoxification mechanism.

The terpenes, play controversial ecological and physiological roles in plant-insect relationships (Rand et al., 2014), which
are virtually poorly explored (Rost�as et al., 2013). The terpenes are probably involved in the defense against pathogens and
predators of galling insects (Rost�as et al., 2013) or as attractants for gall natural enemies, such as the parasitoids (Tooker and
Hanks, 2006).

The a-bergamotene and the spathulenol are sesquiterpenes identified exclusively in non-galled stems. The a-bergamotene
was previously identified as traces (<1%) in leaves of S. polygamus, and may possibly attract predators of free-living herbi-
vores, and can alternatively protect gall tissues against herbivores (Damasceno et al., 2010). Such an effect was found in the
leaves of Nicotiana attenuate Steud under the attack of Manduca quinquemaculata Haworth, whose oral secretion can stim-
ulate the production of a-bergamotene, which attracts a predator insect (Kessler and Baldwin, 2001). The spathulenol is part
of the chemical composition of the essential oil in many plants, and has been detected in leaf extracts of Melampodium
divaricatum Rich. and Conyza albida Willd. ex Sprengel, where it was related to repellency against ants and to antimicrobial
activity, respectively (Hubert and Wiemer, 1985; Pacciaroni et al., 2000). Based on experimental evidences (Hubert and
Wiemer, 1985; Pacciaroni et al., 2000; Damasceno et al., 2010), we propose that the spathulenol in the non-galled stems
of S. polygamus can function as a chemical defense against natural enemies, as well.

Current analyses detected two SM in S. polygamus for the first time, the a-amyrin, detected just in non-galled leaves, and
the ursenal, detected exclusively in non-galled stems. The a-amyrin has been reported in leaves of medicinal and oleo-
resinous plants, including some species of the genus Schinus (Lloyd et al., 1977; Frontera and Tomas, 1994). However, the
a-amyrin has not been previously detected in leaves and fruits of S. polygamus examined in Chile (Erazo et al., 2006),
Argentina (Gonz�alez et al., 2004), and Brazil (Damasceno et al., 2010). Likewise, ursenal is another triterpene that has not been
reported for this plant genus or species (Murray et al., 2012). Both, a-amyrin and ursenal, are related to important biological
functions against various health-related conditions, as inflammation, microbial, fungal, and viral infections and cancer cells
(Liu, 1995; Hern�andez et al., 2012). The presence of these SM in the non-galled tissues of S. polygamus, support the folk
medicinal uses of this species, such as the antipyretic, anti-inflammatory and analgesic activities of the aerial parts of the
plant (Erazo et al., 2006), but seems to be impaired by gall induction.

4.3. Convergent and divergent adaptive traits in the two types of galls

The structural analyses of the stem and leaf galls of S. polygamus demonstrated the typical anatomical profiles of the
Anacardiaceae and Schinus species (�Alvarez et al., 2009; Agudelo and Ricco, 2012; Agudelo et al., 2013; Dias et al., 2013a).
Nevertheless, the structural and chemical profile of both host organs is quite distinct, and some convergent similarities were
observed in response to the stimuli of their associated galling herbivores. Trichomes, hyperplasia of cortical parenchyma, and
accumulation of phenolics were convergently induced by galling stimuli.

The overdifferentiation of trichomes and the hyperplasia of cortical parenchyma could be associated with the feeding
mouth apparatus of the psyllids (piercing stylets) (Burckhardt, 2005). Such morphological features are independent of the
galling herbivore taxa, but presumably associated with their feeding habits. Dias et al. (2013a) described a convergence in
tissue composition of C. duvauae galls on S. polygamus and those of A. lantanae on L. camara, both with piercing stylets. The
mode of feeding and the number of galling herbivores per chamber should influence cell responses and consequently the
generation of distinct gall morphotypes (Isaias et al., 2014).

However, not only the feeding habits of the gall-inducing insects are crucial to the establishment of plant cell responses,
but the morphogenetic potentialities and constraints of the host plant tissues are also decisive (Isaias et al., 2014). The
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interactive signaling both from the galling insects and from the host plants seems to cause a gradient of stimuli (Oliveira and
Isaias, 2010; Carneiro et al., 2014). This gradient may trigger the differences in the external and internal morphological
features of both the stem and leaf galls on S. polygamus, despite of the fact that they are induced by psyllids with the same
feeding habits and on the same host plant species.

The psyllid induces leaf and stem galls on S. polygamus (S�aiz and Nú~nez, 1997; Burckhardt and Basset, 2000) with different
morphotypes (color and shape), nymphal chamber and organization of cortical parenchyma. Phylogenetic analyses of aphids
(Stern, 1995), gall wasps (Stone and Cook, 1998), thrips (Crespi et al., 1997), and sawflies (Nyman et al., 2000) report that the
galling insects, and not the host plants, determine the location, size, and shape of the galls. In Lantana camara L., two leaf galls,
induced by different galling agents: Aceria lantanae Cook and Schismatodiplosis lantanae Rubsaamen induces distinct plant
tissues reorganization, and forms typical gall structures (Moura et al., 2008), which reinforces such premise. Nevertheless,
even though the influence of the host plant or host plant organs potentialities is commonly neglected, stems are considered to
host simpler galls than leaves (Formiga et al., 2015). Despite, in current model of study, stem and leaf galls are anatomically
similar, and the differences observed could be determined by the potentialities of the host plant organs, once the mode of
feeding of both galling insects is similar. Our results support the hypothesis that the inducing agent as well as the potenti-
alities and constraints of the host plant morphogenesis are responsible for the determination of gall morphotypes.

Also, current results indicate the accumulation of steroids as the only chemical convergent feature maintained from non-
galled condition toward stem galls. Plant cells synthesize a complex array of sterol mixtures, which has essential roles at the
cellular level (Hartmann, 1998). On the other hand, phenolics accumulation both in leaf and stem galls is the only remarkable
chemical convergence, probably linked to the influence of the psyllids on S. polygamus.
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